PHYS 410 - Project 2

Felipe Garavelli
46427951

December 4, 2025

Contents
1 Introduction

2 Theory
2.1 The Time-Dependent Schrédinger Equation . . . . . . . ... .. ... ...
2.2 Probability Density and Diagnostics . . . . . . . .. . ... ... ...

3 Numerical Approach
3.1 Discretization and Crank-Nicolson Scheme (1D) . . . . ... ... ... ...
3.2 Alternating Direction Implicit Scheme (2D) . . . ... ... ... ... ...
3.3 Convergence Testing Methodology . . . . . . . ... .. ... ... ... ...

4 Implementation
4.1 1D Solver Function (sch_id.cn) . . . . . . . . .. ..
4.2 2D Solver Function (sch-2d_adi) . . .. .. ... ... ... .........

5 Results: 1D Simulations
5.1 1D Convergence Analysis . . . . . . . . . . ... .
5.2  Experiment 1: Barrier Survey . . . . . . ... ... oo
5.3 Experiment 2: Well Survey . . . . . .. ... oo

6 Results: 2D Simulations
6.1 2D Convergence Analysis . . . . . . . . . . .. ...
6.2 Scattering Experiments . . . . . . . ... Lo oL
6.2.1 Rectangular Barrier . . . . . . . . .. .. oo
6.2.2 Rectangular Well . . . . . . . .. ..o
6.2.3 Double Slit . . . . ...
6.2.4 Square Pillar . . . . ...

7 Conclusion
7.1 Useof AL . . . . o s,

8 Files

N DN

(S)} Ol W W

S Ot



1 Introduction

This project investigates the dynamics of quantum mechanical systems through the nu-
merical solution of the Time-Dependent Schrodinger Equation (TDSE), implemented in
MATLAB. The approach utilizes two implicit finite difference techniques. Specifically the
Crank-Nicolson method for the one-dimensional case and the Alternating Direction Im-
plicit (ADI) scheme for two spatial dimensions. While the present model operates within a
non-dimensionalized framework and focuses on single-particle dynamics, it captures essen-
tial quantum phenomena such as wave packet spreading, tunneling, and interference. The
primary objective of this project is to simulate and visualize the time evolution of wavefunc-
tions interacting with various potentials, including rectangular barriers, wells, and double
slits. The project also validates the accuracy of the one and two-dimensional solvers through
convergence testing.

2 Theory

2.1 The Time-Dependent Schrodinger Equation

The simulations are based on the Time-Dependent Schrodinger Equation (TDSE), which
describes the quantum state evolution of a particle in a potential field. The wavefunction,
1, encapsulates the probability amplitude of finding a particle at a given position and time.
For the one-dimensional case, the TDSE is given by:

where V' (z,t) represents the potential. This equation is solved on the domain 0 < z < 1
subject to Dirichlet boundary conditions ¢(0,t) = ¥(1,t) = 0.

For the two-dimensional problem, the equation generalizes to include the second spatial
derivative, resembling a diffusion equation with an imaginary diffusion constant:

Zw(l', Y, t)t = _(wxx + ¢yy) + V(.Qf, yW (2)

The 2D domain is defined as the unit square (0 < z,y < 1), with the wavefunction equalling
0 at all boundaries. In both dimensions, the potential V' may represent free space (V' = 0),
rectangular barriers/wells, or complex geometries such as a double slit.

2.2 Probability Density and Diagnostics

A fundamental property of the wavefunction is the probability density, defined as p = [)|* =
Yp*. To analyze the behavior of the particle, we utilize the “running integral” of the prob-
ability density, P(z,t):

Plat) = [ (a0 (@ s 3)
0
In a closed system with normalized initial data, P(1,t) must equal 1; however, even without

explicit normalization, the value P(1,t) must remain conserved to the level of the solution
erTor.



To quantify scattering effects, we define the time-averaged probability distribution Fj
over the total integration time. For a specific spatial interval [1, 23], the excess fractional
probability, F'., compares the particle’s residence time in that interval against that of a free

particle:

Fo (21, 7) = P(x3) = P(1)

(4)

Here, P(x) denotes the normalized, time-averaged probability integral. A value of F, < 1 in-
dicates the particle spends less time in the interval than a free particle would, a characteristic
metric for analyzing tunneling and scattering phenomena.

To — T

3 Numerical Approach

3.1 Discretization and Crank-Nicolson Scheme (1D)

The continuum domain is discretized by introducing a discretization level [, which defines
the spatial mesh spacing Az = 27! and the number of spatial points n, = 2' + 1. The
temporal spacing is coupled to the spatial mesh via the parameter A = At/Ax. Lastly, the
total number of time steps is given by n; = round(7/At)+ 1, where T is the total simulation
time.

To solve the 1D Schrédinger equation, we employ the Crank-Nicolson method, an implicit
scheme that is second-order accurate in both time and space (O(At?, Az?)). The discretized
equation takes the form:

77Zjn-i-l wn _l ( ;Lj—ll o 2¢n+1 +'§Z)n+1 N J+1 22/}71 +1/1;1 1)

At 2 Ax? Ax?
1 n—l—% n n
+ §Vg (wj H + wj ) (5>
fory=2,...,n,—1,and n=20,1,...,n; — 1. This formula results in a complex tridiagonal

system of linear equations for the advanced time step 1"+, which is solved efficiently using
sparse matrix operations. The system is first rearranged by multiplying through by At and
introducing the constants:

At At

_ _ n+y
“aa M=

and moving the terms involving "' to the left-hand side and those involving ™ to the
right-hand side:

"H + (1 — 200 — ,uj)w;”rl +a ;-1111 = —a?_y + (i + 20+ ;)Y — ol
Equivalently, we can write it as
n+1 4 b. wnJrl —|—C] ;‘1111 — dj7 (6)

with
a; =c¢j = by =1i— 20 — pj,



and the right-hand side
d O“wb] 1—|—(Z—|—20¢—|—M])w - ]+1

This is the tridiagonal system where the coefficients a;, b;, and ¢; form the sub-diagonal,
main diagonal, and super-diagonal, respectively. In this form, the system can be solved by
looping over time steps and using MATLAB’s built-in sparse matrix capabilities.

3.2 Alternating Direction Implicit Scheme (2D)

For the two-dimensional problem, solving a large sparse system directly becomes computa-
tionally expensive. Instead, we utilize the Alternating Direction Implicit (ADI) technique
with the same discretization parameters as in the 1D case. This operator-splitting method
advances the solution from " to ™! in two half-steps.

Defining the standard second-order central difference operators 9" and Ogy, the ADI
scheme is implemented first with an implicit step in the z-direction,
At nt1 At At ,At n
followed by an implicit step in the y-direction:
At A " ntl
(1 - 27% +i— ) Pt =y (8)

where indices ¢ and j correspond to the x and y spatial grid points, respectively. These steps
utilize the central difference approximations for the second derivatives (assuming Az = Ay):

¢ Vi1 — 20+ iy ¢ Vi — 205+ Vi L
Wi Ax? ' W Ax?

Defining the discretization constants similar to the Crank-Nicolson scheme:

1At At

= ma Wi = 27‘/2‘,]',

we can rearrange the equations to solve for the unknown wavefunctions.

To implement the first half-step, Equation (7), the code evaluates the right-hand side
(RHS) efficiently by splitting the operator product into two explicit stages.

First, we evaluate the inner operator, which accounts for the explicit diffusion in the
y-direction and the interaction with the potential V. This generates an intermediate array,
denoted here as ®; ;:

;=) + (1 —2a — pj) i + oy

Next, we apply the explicit z-direction operator to this intermediate result ® to construct
the final forcing term d, ;:

d@j = CY@H_L]‘ + (1 — 20&) (I)z‘,j + aq)i—l,j-
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With d; ; constructed, the code solves the implicit tridiagonal system for the updated half-
step wavefunction 1" 1/2:
n+x nt+i n+l
_awiflfj + (1 + 2a)wi,j ? = awiJrl?j =d;;. 9)

This two-stage approach ensures that the cross-terms and potential interactions are applied
in the correct order before the implicit solver is invoked.

The second half-step is similarly rearranged. Note that the potential term p; ; appears
on the implicit side for this step:

1
n+3

—op7 i+ (L4 200+ pag )il — ol =

7’7]

(10)

Each half-step involves solving n, tridiagonal systems of size n, and n, systems of size n,,
respectively. This approach significantly reduces computational complexity compared to
solving the full 2D system directly, while maintaining second-order accuracy in both space
and time.

3.3 Convergence Testing Methodology

To verify the accuracy of the numerical implementation, we perform convergence tests across
multiple discretization levels (I = 6 to | = 9). We compute the Ly norm of the deviation
between solutions at consecutive levels, denoted as di)':

1! [2(t") = 19" = 9! [|2(t") (11)

where the finer grid solution 1!*! is coarsened to match the ! grid. Since the FDA is O(h?),
we expect the error to decrease by a factor of 4 as the resolution doubles. Consequently,
plotting 4'~tmin||d)!||y should result in coincident curves. With an exact solution, we also
validate the solver by computing the exact error norm

IE@12(t") = [[Yezac — ¢'[l2(£")

and expect similar convergence behavior with each line being scaled by 4!=tmin

4 Implementation

4.1 1D Solver Function (sch_1d cn)

The sch_1d_cn.m function is the main script for the one-dimensional simulation. It accepts
the integration time tmax, discretization level, and ratio lambda, along with integer flags
and parameter vectors for the initial data and potential types (idtype, idpar, vtype, vpar).

First, the function establishes the spatial grid resolution n, = 2! + 1 and calculates the
time step At = AAz. Then, the initial wavefunction ¢ (z, 0) and potential V' (x) are generated
based on the specified types and parameters. The initial wavefunction is normalized to ensure
that the total probability is unity. A crucial implementation detail for the Crank-Nicolson
scheme is the construction of the complex tridiagonal matrices from Section 3.1. These



matrices represent the left-hand side and right-hand side of the discretized TDSE. These are
efficiently generated using MATLAB’s spdiags command to exploit the sparse structure of
the problem.

Once initialized, the function enters the main time-stepping loop. Unlike an explicit
scheme, the Crank-Nicolson method requires solving a system of equations at each step.
To optimize performance, the constant tridiagonal matrix is pre-factored or solved directly
using MATLAB’s left division operator (\). The code utilizes MATLAB’s native complex
number support, ensuring that the non-conjugating transpose operator (. ) is used to avoid
accidental complex conjugation during matrix operations.

4.2 2D Solver Function (sch 2d adi)

The sch_2d_adi.m function extends the numerical implementation to two dimensions. While
the input interface remains consistent with the 1D solver, the internal logic is restructured
to accommodate the Alternating Direction Implicit (ADI) method described in Section 3.2.

The implementation avoids solving a computationally prohibitive n,n, x n,n, system.
Instead, the operator is split into two half-steps. Critically, the discretization constants «
and g are implemented with the explicit inclusion of the imaginary unit i (e.g., alpha =
1i- At/(2Az?)).

To strictly enforce Dirichlet boundary conditions (¢» = 0 at all boundaries), the solver
adopts an interior-point strategy. Rather than constructing a full matrix that includes
boundary nodes, the linear system is reduced to solve only for indices 2,..., N — 1. The
boundary values are manually clamped to zero during array initialization. This prevents
numerical noise from accumulating at the edges during the intermediate half-steps, ensuring
long-term stability.

The tridiagonal systems for the implicit steps are constructed using MATLAB’s spdiags
function, which minimizes memory overhead by storing only the non-zero diagonals. For
the z-implicit step, the left-hand side operator is independent of the potential, allowing a
single constant matrix A, to be precomputed. In contrast, the y-implicit step incorporates
the potential term p; ; on the left-hand side. Consequently, the matrix A, is reconstructed
dynamically within the solver loop to account for the spatial variation of V(z,y) across
different grid coordinates.

A specific constraint in the 2D implementation is memory scaling. Since the function
returns the full time-history of the wavefunction (an array of size n; x n, X n,), memory
requirements grow cubically with resolution. The script initializes these arrays efficiently,
but users must be mindful of the O(N?) scaling at high discretization levels.

5 Results: 1D Simulations

5.1 1D Convergence Analysis

To validate the accuracy of the Crank-Nicolson implementation, I performed a convergence
test using the exact solution family:

W(z,t) = sin(maz)e ",
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where m is the mode integer. This solution corresponds to a free particle in a box with
zero potential (V' = 0) and Dirichlet boundary conditions. The test parameters, listed in
Table 1, were chosen to check the solver in a scenario where the numerical error can be
directly compared against the analytical solution.

Parameter Value Description

idtype 0 Exact family initial data
vtype 0 Free space (V' =0)

idpar 3] Mode number m = 3

tmax 0.25 Maximum integration time
lambda 0.1  Ratio At/Ax

Lmin 6 Coarsest discretization level
lmaz 9 Finest discretization level

Table 1: Parameters for the 1D convergence test (Exact Solution Case).

The convergence behavior was analyzed using two metrics: the self-convergence norm
||d2)'|]s and the exact error norm ||E(1!)||s. As discussed in Section 3.3, since the Crank-
Nicolson scheme is second-order accurate (O(h?)), we expect the error to decrease by a factor
of 4 as the resolution doubles.

The results are presented in Figures 1 and 2. Figure 1 illustrates the scaled self-
convergence norms as a function of time. The distinct overlap of the curves (where the
error at level [ is scaled by 4/~!min) confirms that the solver is achieving the expected second-
order convergence rate.

Figure 2 displays the scaled exact error norms as a function of time. Similar to the self-
convergence test, the strict alignment of these curves further validates the correctness of the
discretization and the solver implementation against the theoretical model.
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Figure 1: Scaled self-convergence norms 4'~6||dy!|| vs. time for levels | = 6,7,8. The
overlap of the curves demonstrates O(h?) convergence.
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Figure 2: Scaled exact error norms 4'~6|| E(y!)||5 vs. time. The agreement with the theoret-
ical convergence rate validates the solver against the analytical solution.

5.2 Experiment 1: Barrier Survey

In this experiment, I investigated the scattering properties of a quantum particle encounter-
ing a rectangular potential barrier. The setup consists of a boosted Gaussian wave packet



initialized to the left of the barrier (zo = 0.4, p = 20.0). I analyzed the probability of trans-
mission by computing the excess fractional probability from Equation (4), F,, in the region
to the right of the barrier (0.8 < x < 1.0).

The control parameter for this survey was the barrier height, ;. Using the script
barrier_survey, I performed 251 simulations with In(V{) uniformly spaced between 2 and
5. The simulation parameters are summarized in Table 2.

Parameter Value Description

tmax 0.10 Integration time

level 9 Spatial discretization (n, = 513)
lambda 0.01 Ratio At/Ax

idtype 1 Boosted Gaussian

idpar [0.40, 0.075, 20.0] x0,d,p

vtype 1 Rectangular Barrier

vpar [0.6, 0.8, V5] Tomins Tmaz, Height

x1, x2 0.8, 1.0 Transmission measurement region

Table 2: Simulation parameters for the Barrier Survey experiment.

Figure 3 presents the natural logarithm of the excess fractional probability, In(F.,), as a
function of the log-barrier height, In(V).

Experiment 1: Barrier Survey
Region: [0.8, 1.0], Momentum p=20
T I I T

0.05 T
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Figure 3: Log-log plot of the excess fractional probability F. in the transmission region vs.

barrier height V.

The experiment was conducted with a particle momentum of p = 20, corresponding to
a non-dimensional kinetic energy of E ~ p? = 400. The barrier height V; varies such that



In(Vp) € [—2, 5], meaning Vj ranges approximately from 0.14 to 148.

Throughout this entire range, the particle energy exceeds the barrier height (£ > Vj).
Classically, one would expect perfect transmission, which would correspond to In(F,) ~
0. However, Figure 3 shows a decrease in the fractional probability as the barrier height
increases.

This deviation from free-particle behavior is an effect of quantum reflection. Even though
the particle has sufficient energy to surmount the barrier, the sharp discontinuity in the
potential causes a portion of the wave packet to reflect. As Vj increases (approaching the
order of magnitude of E), the reflection coefficient increases, causing F, to drop below 1

(making In(F,) increasingly negative). The curve demonstrates that scattering occurs even
in the absence of a classical turning point.

5.3 Experiment 2: Well Survey

In the second experiment, I examined the interaction of a spreading Gaussian wave packet
with a potential well (Vo < 0). Unlike the barrier survey, the particle was initialized with zero
net momentum (p = 0). The simulation relies on the natural spreading of the wavefunction
to interact with the well located at « € [0.6,0.8].

I measured the excess fractional probability inside the well region. The control parameter
was the magnitude of the well depth, |Vg|. Using the script well_survey, I performed 251
simulations with In(|Vp|) ranging from 2 to 10. The simulation parameters are listed in
Table 3. The result is shown in Figure 4 which plots the natural logarithm of the excess
fractional probability against the log-magnitude of the well depth.

Parameter Value Description

tmax 0.10 Integration time

level 9 Spatial discretization (n, = 513)
lambda 0.01 Ratio At/Ax

idtype 1 Gaussian (No boost)

idpar [0.40, 0.075, 0.0] 20,8, p = 0

vtype 1 Rectangular Well

vpar [0.6, 0.8, V5] Tnins Tmaz, Depth (Vo < 0)

x1, x2 0.6, 0.8 Measurement region (Inside well)

Table 3: Simulation parameters for the Well Survey experiment .
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Experiment 2: Well Survey
Region: [0.6, 0.8], Momentum p=0
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Figure 4: Log-log plot of excess fractional probability F, inside the well vs. well depth |Vp|.
Values less than 0 indicate the particle spends less time in the well than a free particle.

The results in Figure 4 display two distinct physical behaviors: a general downward trend
and strong oscillations.

First, the overall decay of In(F.) confirms the classical expectation of particle acceler-
ation. Inside the well, the potential is negative (V5 < 0), increasing the particle’s kinetic
energy (K = E — V). As the well deepens (In(|Vp|) increases), the particle moves signifi-
cantly faster within the region [0.6,0.8] than it would in free space, reducing its residence
time and thus the integrated probability density.

Second, and more importantly, the plot exhibits prominent oscillations that grow in
amplitude as the well deepens. These are a because of quantum interference and scattering
resonances. The rectangular well creates two sharp impedance mismatches at x = 0.6 and
r = 0.8. As the wave packet spreads into the well, it undergoes multiple internal reflections.

The wavelength of the particle inside the well depends on the depth (A o< 1/4/[Vo]).
As |Vp| varies, the ratio of the well width to the particle’s wavelength changes, cycling
through conditions for constructive and destructive interference. The peaks in the graph
correspond to resonant depths where the wave “traps” or builds up constructively inside the
well, while the troughs correspond to destructive interference where the probability density
is suppressed.
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6 Results: 2D Simulations

6.1 2D Convergence Analysis

To verify the ADI solver, I performed a convergence test using the two-dimensional exact
solution family defined in Eq. 12:

2

Wz, y,t) = e T gin (my ) sin(mymy) (12)
For this test, I utilized mode numbers m, = 2 and m, = 3. The ADI scheme is also second-
order accurate in both space and time (O(h?)). Therefore, we expect the error norms to
diminish by a factor of 4 for each level increment. The test parameters are summarized in

Table 4.

Parameter Value Description

idtype 0 Exact family initial data
vtype 0 Free space (V = 0)

idpar [2,3] Modes m, =2,m, =3
tmax 0.05  Integration time

lambda 0.05 Ratio At/Ax

Lmin 6 Coarsest discretization level
lmaz 9 Finest discretization level

Table 4: Parameters for the 2D convergence test.
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Figure 5: Scaled self-convergence norms 4!=9||dy!||y vs. time for the 2D ADI solver. The
overlap confirms O(h?) accuracy.
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The results of the convergence analysis are shown in Figures 5 and 6. Figure 5 illustrates
the scaled self-convergence norms, 4'~tmin||dy)!||,. Note that for the 2D case, the Ly norm
involves a summation over the full n, x n, grid. The coincident curves confirm that the
ADI splitting error and the spatial discretization errors are both converging at the expected
second-order rate.

Figure 6 compares the numerical solution directly against the analytical function. The
alignment of the scaled error norms ||E(¢!)||y provides strict validation of the 2D solver
implementation.
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Figure 6: Scaled exact error norms 4'~6||E(y!)||2 vs. time for the 2D ADI solver.

6.2 Scattering Experiments

To visualize the dynamics of the two-dimensional Schrodinger equation, I conducted a series
of numerical experiments simulating a Gaussian wave packet interacting with various po-
tential landscapes. As suggested in the project handout, these results were visualized using
filled contour plots of the probability density |1/|* to observe time-evolution phenomena such
as interference and diffraction. The solver does a good job showing these effects until the
wavefunction reaches the boundaries, at which point unphysical reflections occur due to the
Dirichlet boundary conditions.

6.2.1 Rectangular Barrier

In the first scenario, a Gaussian wave packet was directed toward a rectangular potential
barrier of height V{, > E, where F is the kinetic energy of the incoming particle. The wave
packet was initialized with a boost in the z-direction to ensure it would collide with the
barrier. The simulation captures the splitting of the wavefunction into transmitted and
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reflected components. Upon impact, a small portion of the wave packet with energy £ < Vj
tunnels through the barrier, while most of the packet reflects. The parameters for this
simulation are listed in Table 5.

Parameter Value Description

tmax 0.015 Integration time

level 9 Spatial discretization
idtype 1 Boosted Gaussian
idpar [0.25, 0.5, 0.05, 0.05, 50, 0] o, Yo, 0x, Oy, Py Dy
vtype 1 Rectangular Barrier
vpar (0.5, 0.55, 0.0, 1.0, 4000]  Zpmins Tmazs Ymin, Ymaz, Ve

Table 5: Parameters for the 2D Rectangular Barrier experiment.

Figure 7 displays three snapshots of the interaction. The interference between the incom-
ing tail and the reflected head of the wave packet creates a standing wave pattern (ripples)
in the probability density on the incident side of the barrier. In the last snapshot, you can
see the wavepacket hitting the boundary and reflecting back into the domain, which is an
unphysical artifact of the Dirichlet boundary conditions.
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Figure 7: Time evolution of the probability density [¢)|? scattering off a rectangular barrier.
Snapshots taken at t = 0, t = 0.004, and ¢ = 0.007.
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6.2.2 Rectangular Well

Next, I simulated scattering off a rectangular potential well (V5 < 0). In this case, the
classical expectation is that the particle accelerates as it traverses the well. Quantum me-
chanically, this manifests as a shortening of the wavelength inside the potential region. The
setup parameters are provided in Table 6.

As seen in Figure 8, the impedance mismatch at the well boundaries causes partial
reflections at both the entry and exit interfaces. These internal reflections lead to transient
trapping effects within the well before the packet eventually transmits through.
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Parameter Value Description

tmax 0.015 Integration time

level 9 Spatial discretization
idtype 1 Boosted Gaussian
idpar [0.25, 0.5, 0.05, 0.05, 20, 0]  xo, Yo, Iz, Oy, Py Dy
vtype 1 Rectangular Well

vpar [0.5, 0.8, 0.2, 0.8, -10000]  Zpin, Tmazs Ymin, Ymazs Ve

Table 6: Parameters for the 2D Rectangular Well experiment.
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Figure 8: Snapshots of the wave packet interacting with a potential well. Note the change
in wavelength and probability density inside the well region.

6.2.3 Double Slit

To demonstrate quantum interference, I implemented a double-slit apparatus. The potential
was defined as a thin wall at a fixed y-index with two narrow apertures. As the Gaussian
wave packet strikes the wall, the majority is reflected, but a coherent wavefront emerges
from the slits.

Parameter Value Description

tmax 0.01 Integration time
level 9 Spatial discretization
idtype 1 Boosted Gaussian
idpar [0.5, 015, 0.05, 0.05, 0, 20] =0, Yo, Oz, Oy, P> Py
vtype 2 Double Slit

vpar [0.3, 0.35, 0.65, 0.7, 1000]  x1, z2, x3, x4, Ve

Table 7: Parameters for the 2D Double Slit experiment.

On the far side of the barrier (Figure 9), these cylindrical waves expand and overlap.
The resulting probability density displays characteristic interference fringes confirming the
wave nature of the particle.
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Figure 9: Diffraction through a double slit. The emerging wavefronts interfere to form a
fringe pattern on the far side of the barrier.
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6.2.4 Square Pillar

Finally, we extended the investigation to a custom geometry: scattering off a localized
“pillar” potential. This setup models a finite obstacle placed directly in the path of the wave
packet. Unlike the wall, the wave packet can flow around the object.

Parameter Value Description

tmax 0.008 Integration time

level 9 Spatial discretization
idtype 1 Boosted Gaussian
idpar (0.2, 0.5, 0.05, 0.05, 50, 0] 0, Yo, Oz, Oy, Dy Dy
vtype 1 Square Pillar

vpar [0.5, 0.55, 0.475, 0.525, 1000]  Zymin, Tmazs Ymins Ymaz, Ve

Table 8: Parameters for the 2D Pillar experiment.

Figure 10 reveals the diffraction of the wavefunction around the edges of the pillar. Behind
the obstacle, the wavefronts that wrap around the left and right sides converge, creating a
complex interference wake.
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Figure 10: Scattering off a square pillar potential. The wavefunction diffracts around the
obstacle, creating an interference wake downstream.
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7 Conclusion

This project successfully implemented and verified numerical solvers for the TDSE in both
one and two dimensions. By utilizing the Crank-Nicolson method for the 1D case and the
ADI scheme for the 2D case, the simulations achieved the expected unconditional stability
and O(h?) convergence rates. The numerical experiments accurately reproduced fundamental
quantum phenomena, including wave packet spreading, quantum reflection above potential
barriers, and the emergence of scattering resonances within potential wells.

A challenge encountered in this project was implementing the two step ADI method and
solving the resulting tridiagonal systems efficiently. Remembering that the imaginary unit
was correctly incorporated into the discretization constants brought some difficulty. That
simple mistake led to unstable behavior. Additionally, interpreting the “excess fractional
probability” metric initially proved counter-intuitive, particularly in the 1D barrier survey
where the potential was infact lower than the particle energy since energy, £ ~ p?, was
greater than the barrier height, V4. This led to confusion when analyzing the results.

7.1 Use of AI

I used ChatGPT and Gemini as a guide to help me understand the numerical schemes and
clarify the underlying quantum mechanics. All code was written by me. Al was primarily
used for formatting tables in my LaTeX report and generating consistent MATLAB plots
to ensure a uniform visual style. ChatGPT was also helpful in debugging my ADI solver,
specifically identifying a missing imaginary unit ¢ in the discretization constants which had
me stuck for hours. It also assisted in making the figures for the 2D experiments after
generating the movies.

8 Files

The following MATLAB files were created for this assignment:

e Solvers: sch_1d_cn.m, sch_ 2d_adi.m
e Problem 1: ctest_1d.m, barrier_survey.m, well_survey.m

e Problem 2: ctest_2d.m, movies.m
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