
PHYS 410 - Project 1

Felipe Garavelli
46427951

October 17, 2025

Contents

1 Introduction 2

2 Theory 2
2.1 N-Body Problem . 2
2.2 Toomre Model . 3

3 Numerical Approach 3
3.1 Finite Difference Grid . 3
3.2 Initial Conditions for Two-Body Circular Orbit 4
3.3 Convergence Testing . 5

4 Implementation 7
4.1 N-Body Solver Function . 7
4.2 Acceleration Calculation Function . 8
4.3 Simulation Setup . 8

5 Results 9
5.1 Simulation 1 . 10
5.2 Simulation 2 . 11

6 Conclusion 12
6.1 Use of AI . 12

7 Files 12

A MATLAB Code Listings 14
A.1 N-Body Solver Function (nbody.m) . 14
A.2 N-Body Acceleration Function (nbodyaccn.m) 15

1

1 Introduction

This project investigates the dynamics of galactic collisions through a simplified numerical
simulation implemented in MATLAB. The model is inspired by the work of Alar and Jüri
Toomre in the early 1970s, who demonstrated that even rudimentary gravitational models
can reproduce the large-scale morphological features observed in interacting galaxies, such as
the famous Antennae Galaxies. While the present model captures the essential physics gov-
erning tidal distortions produced by mutual gravitational attraction, it omits many complex
effects. Such as hydrodynamics, dark matter halos, and self-gravity within each galaxy.

The primary objective of this project is to simulate and visualize the evolution of two
interacting galaxies, observing the emergence of characteristic tidal features and examining
how parameters such as mass ratio and initial conditions affect the resulting morphology.

2 Theory

2.1 N-Body Problem

In the N -body problem we are interested in finding the positions ri through time of N
particles with masses mi that interact gravitationally with one another. This problem can
be described by using Newtonian gravitational forces. Newton’s second law states that miai

is the sum of all forces on particle i. Newton’s law of gravitation states that the force between
two particles is given by:

Fij = G
mimj

r3ij
(rj − ri). (1)

We can use equation (1) and Newton’s second law to write the acceleration of particle i as:

ai =
∑
j ̸=i

Gmj

r3ij
(rj − ri), (2)

where rij = ∥rj − ri∥ is the distance between particles i and j.
We also can re-write ai as the second derivative of position with respect to time:

ai =
d2ri
dt2

and combining this with equation (2) we get the following second order differential equation:

d2ri
dt2

=
∑
j ̸=i

Gmj

r3ij
(rj − ri). (3)

Now we can also use the finite difference method to approximate the second derivative
of position with respect to time using the second order centered formula,

d2ri(t)

dt2

∣∣∣∣
t=tn

=
rn+1
i − 2rni + rn−1

i

∆t2
, (4)

2

where rni ≡ ri(t
n) and tn = n∆t for n = 0, 1, 2, . . . , nt. Combining equations (3) and (4),

and setting G = 1, we get the following finite difference equation for the N -body problem:

rn+1
i − 2rni + rn−1

i

∆t2
=

∑
j ̸=i

mj

(rnij)
3

(
rnj − rni

)
, n+ 1 = 3, 4, . . . , nt (5)

Solving for rn+1
i in equation (5) gives the update equation:

rn+1
i = 2rni − rn−1

i +∆t2
∑
j ̸=i

mj

(rnij)
3

(
rnj − rni

)
, n+ 1 = 3, 4, . . . , nt (6)

Because this second-order system requires the first two positions to start the iteration,
the following initial conditions are needed. The first position is given directly by the initial
condition, r1i = ri(0). The second position, r2i , can be estimated using a Taylor series
expansion, as in Tutorial 3 for the pendulum:

r2i = r1i + v1
i ∆t+

1

2
a1
i ∆t2, n = 1, 2, . . . , nt − 1 (7)

where a1
i is the acceleration at the first time step, computed using equation (2).

2.2 Toomre Model

With the update equation (6) and the initial conditions described above we can simulate
the motion of N particles interacting gravitationally. If we want to simulate two galaxies
colliding with one another utilizing the equation (6) would be computationally expensive
since each star would interact with every other star in the simulation. Toomre simplified
this problem by modeling each galaxy as a massive core with mass mci, each core surrounded
by nsi massless stars. This simplification reduces the number of required interactions, as only
the cores interact with one another, while the stars interact only with the cores.

Since the stars have vanishing gravitational masses calculating their initial velocities is
straightforward. In the project we assumed that all galaxies have circularly orbiting stars
around their cores. We can easily derive the circular velocity of a star by equating its net
force to the centripetal force required for circular motion,

Fnet =
Gmsmc

r2
=

msv
2
circ

r
.

Therefore the velocity of each star with respect to its core with mass mc is given by:

vcirc =

√
Gmc

r
.

3 Numerical Approach

3.1 Finite Difference Grid

To solve the N -body problem, we must discretize the continuous time domain 0 ≤ t ≤ tmax

(where tmax is chosen by the user). We discretize this domain using a uniform time mesh,
where the positions ri and velocities vi are evaluated at a finite number of time points.

3

To implement and test convergence (Section 3.3), we define this grid using a level pa-
rameter, ℓ. This parameter controls the resolution of our time mesh. The total number of
time points, nt, is given by:

nt = 2ℓ + 1

This defines a set of nt discrete times tn = (n− 1)∆t for n = 1, 2, . . . , nt. The uniform time
step, ∆t, is determined by the total time tmax and the level ℓ:

∆t =
tmax

nt − 1
=

tmax

2ℓ
.

Increasing the level parameter ℓ by one will double the number of time points and halve the
time step ∆t, which is ideal for testing the convergence order of our solver.

I’d like to acknowledge that this assumption of a constant ∆t may not be optimal for
all simulations. During close encounters, particles “clump” and experience rapidly changing
accelerations, which would ideally be resolved with a much smaller, adaptive time step.
However, for this project, this fixed-step approach is convenient and robust.

3.2 Initial Conditions for Two-Body Circular Orbit

To validate the N -body solver’s basic functionality prior to convergence testing, we first
simulated the case of a two-body problem. The goal was to ensure the code could reproduce
a stable, circular orbit before conducting a more rigorous analysis. This was accomplished
by establishing a circular orbit for two point masses, m1 and m2, separated by a distance R.
We work in the center of mass (CoM) frame, placing the CoM at the origin (0, 0, 0).

The gravitational force Fg between the two masses provides the necessary centripetal
force Fc for each body to maintain its orbit.

Fg =
Gm1m2

R2

The radii of the individual orbits around the CoM are r1 and r2, where R = r1 + r2. From
the definition of the CoM, m1r1 = m2r2. Solving for r1 and r2 gives:

r1 =
m2

m1 +m2

R and r2 =
m1

m1 +m2

R (8)

The centripetal force for each mass is Fc1 = m1v
2
1/r1 and Fc2 = m2v

2
2/r2. Setting Fg = Fc1

and Fg = Fc2 and solving for the orbital speeds v1 and v2, we find:

v1 =

√
Gm2r1
R

and v2 =

√
Gm1r2
R

(9)

To test the solution, we align the particles on the x-axis and direct their initial velocities
entirely along the y-axis. This configuration is chosen to produce a stable circular orbit in
the x-y plane. The specific values used for this test are detailed in Table 1, providing a
reliable benchmark for our solver.

Using the initial conditions detailed in Table 1, the N -body solver was run for a total
time tmax (corresponding to several orbital periods). The resulting trajectories of the two
cores are plotted in Figure 1. The plot clearly shows that the particles maintain a stable,
circular orbit, which validates the basic functionality of our solver.

4

Table 1: Initial conditions for the two-body validation test case. The values for r1, r2, v1, v2
are calculated using equation (8) and (9) in Section 3.2 with R = 1 and G = 1.

Body Mass (m) Initial Position (r(0)) Initial Velocity (v(0))
Core 1 m1 = 1.0 (0.333, 0, 0) (0, 0.408, 0)
Core 2 m2 = 0.5 (−0.667, 0, 0) (0,−0.816, 0)

Figure 1: Trajectory of the two-body orbit simulation.

3.3 Convergence Testing

To empirically verify the numerical accuracy of our N -body solver, we perform a convergence
test. This test confirms that the implementation is correct and achieves its theoretical order
of accuracy. We use the stable two-body circular orbit from Section 3.2 as our test case and
follow the same convergence testing method from Tutorial 3.

The test is conducted by running the simulation four times with identical physical pa-
rameters (tmax, m1, m2, R) but with progressively finer time steps. As defined in Section
3.1, we vary the time step by changing the integer-valued level parameter ℓ. For this test,
we used ℓ = 6, 7, 8, and 9. This produces four distinct solutions for the particle trajectories.
We focus on the x-position of the first particle, x(t), generating four solution vectors: x6, x7,
x8, and x9.

First, the trajectories from all four levels are plotted on the same axes, as shown in Figure
2. The solutions show general agreement, but there is a visible deviation that grows over
time. As expected, the coarsest simulation (ℓ = 6, red line) diverges the most from the finer,
more accurate solutions.

To quantify this convergence, we must compare the solutions at identical time points. We
“downsample” the higher-level solutions to match the discrete time grid t6 of the coarsest
level. This is done by selecting every 2nd point from x7, every 4th from x8, and every 8th

5

Figure 2: Trajectory x(t) of particle 1 for levels 6, 7, 8, and 9. The solutions converge as the
time step decreases (ℓ increases).

from x9. We can then compute the differences between successive solutions:

∆x6,7 = x6 − x7,ds

∆x7,8 = x7,ds − x8,ds

∆x8,9 = x8,ds − x9,ds

These differences, which serve as a direct measure of the solution error, are plotted in Figure
3. The plot clearly shows that the magnitude of the error decreases significantly as ∆t gets
smaller.

Figure 3: Unscaled differences between solutions at successive levels.

Since we are using a second-order finite difference algorithim its error E should scale with
the time step as E ∝ (∆t)2. Since each increase in level ℓ halves the time step (∆t → ∆t/2),
the error should decrease by a factor of 22 = 4. We can test this hypothesis directly. If the

6

method is second-order, we expect the following relationship:

∆x6,7 ≈ 4×∆x7,8 ≈ 16×∆x8,9

To visualize this, we scale the finer differences and plot them against the coarsest difference.
Figure 4 plots ∆x6,7, 4×∆x7,8, and 16×∆x8,9 on the same axes. The three curves are nearly
coincident, which provides strong visual evidence that our solver is, as expected, second-order
accurate.

Figure 4: Scaled differences. The overlap of the three curves confirms the theoretical second-
order convergence of the solver.

4 Implementation

4.1 N-Body Solver Function

The nbody.m function serves as the main driver for the simulation. It accepts the total
simulation time tmax, the discretization level, and the initial conditions (masses m, positions
r0, and velocities v0).

First, it establishes the finite difference time grid based on the level parameter, as
defined in Section 3.1. As a practical implementation detail, rather than calculating deltat

from the level, the time vector t is first generated using linspace. The constant time step
deltat is then simply found by taking the difference t(2) - t(1). A critical step is the
initialization of the first two time steps. The position at n = 1 is simply the initial position
r0. The position at n = 2 is then calculated using the second-order Taylor expansion from
equation (7), which requires a single, initial call to the acceleration function nbodyaccn.

Once initialized, the function proceeds to the main time-stepping loop. This loop is
highly efficient, as it iterates only over time (from n = 2 to nt − 1) and not over the N
particles by calculating their next position all at once. At each time step, it computes the
acceleration an

i for all particles and then applies the second-order central difference formula
to find the next positions rn+1 using equation (6).

7

4.2 Acceleration Calculation Function

The nbodyaccn.m function is the most computationally intensive part of the simulation, as
it must compute the gravitational interactions of thousands of stars for each time step. A
key optimization, discussed in Section 2.2, is implemented here.

Our galaxy models consist of a core particles (m > 0) and a large number of massless
star particles (m = 0). The function first identifies the indices and masses of only the core
particles.

It then loops from i = 1 to N , calculating the acceleration for every particle (both
cores and stars). However, the force calculation inside the loop only sums the contributions
from the particles with mass by already knowing its indices. This optimization reduces the
computational complexity from O(N2) to a much more manageable O(N × Ncore). In our
project, Ncore is typically 2, while N can be several thousand.

Within the loop, operations are vectorized using vecnorm and element-wise arithmetic
to compute the forces from all cores onto particle i simultaneously. A check is included to
set the distance to infinity (Inf) for self-interaction (i.e., when particle i is itself a core),
preventing a division-by-zero.

4.3 Simulation Setup

Before simulating a full collision, I implemented the toomre galaxy.m function to initialize
the galaxies. This function was first tested by generating a single, isolated galaxy to ensure
the model was stable and that the stars would correctly orbit the central core in stable
circular paths, as expected. The initial parameters for this validation run are specified in
Table 2. The simulation was run for several rotational periods, and the result is shown in
Figure 5. The figure confirms the system’s stability, with the blue dots (stars) maintaining
their circular orbits around the central red dot (core). The toomre galaxy.m function was
implemented to generate galaxies rotating only about the z-axis, with options for either
clockwise (CW) or counter-clockwise (CCW) spin.

Table 2: Initial conditions for the single galaxy validation test.

Parameter Value
Number of Stars (Nstar) 500
Core Mass (Mcore) 1.0
Initial Core Position (0, 0, 0)
Initial Core Velocity (0, 0, 0)
Min. Disk Radius (Rmin) 0.1
Max. Disk Radius (Rmax) 0.5
Spin Axis CCW [z-axis]

With the galaxy generation function validated, a top-level script constructs the initial
state of the two interacting galaxies. Each galaxy is generated using toomre galaxy.m. Once
the two individual galaxy models are created, their respective particle lists are combined.
The initial position matrices (r01, r02) and velocity matrices (v01, v02) are concatenated

8

Figure 5: Trajectory of tracer particles in a stable, isolated disk galaxy, confirming the
toomre galaxy.m function.

to form the global r0 and v0 arrays. These arrays, along with the combined mass vector m,
serve as the complete set of initial conditions for the nbody.m solver.

The main script then executes the nbody function for a specified total time tmax. After
the simulation is complete, the solver returns the full N × 3× nt position array r (where N
is the total number of particles) and the time vector t. These outputs are then passed to a
separate animation.m function, which processes the data to create a dynamic visualization
of the particle trajectories and the morphological evolution of the collision over time.

5 Results

Here are some interesting results from several simulations of interacting galaxies. By varying
the initial conditions of the two-galaxy system we can use the N -body solver to model a wide
range of interacting morphologies.

Before presenting the final visualizations, it’s important to note a key flaw in the Toomre
model encountered during testing. The model does not include gravitational softening.
Consequently, any star particle that passes extremely close to a core experiences a near
singular gravitational force, resulting in an unphysically massive acceleration causing it to
fly away.

9

5.1 Simulation 1

Our first simulation models two galaxies with equal core masses but different initial velocities
and disk sizes. The specific initial conditions for this run are detailed in Table 3.

Table 3: Initial conditions for Simulation 1.

Parameter Blue Galaxy Green Galaxy
Mcore 0.2 0.2
Nstar 5000 5000
rcore (2, 4, 0) (-2, -4, 0)
vcore (-0.1, 0.1, 0) (0.2, 0, 0)
Rmin 0.7 0.2
Rmax 3.5 4.1
Disk Spin CCW CW

The resulting interaction is shown in Figure 6 with each galaxy represented by a different
colour. As the galaxies pass each other, their mutual gravitational pull strips stars from
the outer disks, creating prominent, long tidal tails. The bridge of stars connecting the two
galaxies is visible.

Figure 6: Snapshot of Simulation 1 at t = 48.39, showing the formation of long tidal tails
and a stellar bridge.

10

5.2 Simulation 2

In this second simulation, I explored the effect of unequal core masses and different initial
velocities with galaxies rotating in the same direction. This effect created a less complex
interaction as the heavier galaxy remained mostly intact while the lighter galaxy was heavily
distorted. The initial conditions for this run are summarized in Table 4.

Table 4: Initial conditions for Simulation 2.

Parameter Blue Galaxy Green Galaxy
Mcore 1.5 2.0
Nstar 5000 5000
rcore (4, 0, 0) (-3, 0, 0)
vcore (0, -0.4, 0) (0, 0.3, 0)
Rmin 1.7 1.1
Rmax 3.5 3.3
Disk Spin CCW CCW

The resulting interaction is shown in Figure 7. The heavier galaxy (green) remains
relatively undisturbed, while the less massive galaxy (blue) is significantly distorted, forming
a pronounced tidal tail. The interaction highlights how mass ratios influence the dynamics
of galactic collisions.

Figure 7: Snapshot of Simulation 2 at t = 39.45.

11

6 Conclusion

In this project, I successfully developed, tested, and implemented a gravitational N -body
solver in MATLAB to simulate the dynamics of galactic collisions. The solver, based on
a second-order central difference scheme, was validated through a two-body circular orbit
test and a convergence test. The convergence analysis confirmed the solver’s theoretical
second-order accuracy, giving us strong confidence in its implementation. Using this solver,
we modeled galaxies as a massive central core and a disk of massless stars according to
Toomre’s model. The simulations successfully reproduced a range of intersting morphologies.
The results clearly demonstrated the high sensitivity of a collision’s outcome to its initial
parameters, such as the mass, velocity, and orientation of the interacting galaxies.

A primary challenge throughout the project was managing the computational cost asso-
ciated with the N-body problem. The O(N2) complexity of a naive acceleration calculation
is computationally hard for a large number of particles. It’s initial implementation would
take minutes for 1000 stars to be calculated. This was mitigated by a key optimization in
the nbodyaccn.m function, which treated only the two cores as massive sources of gravity.
This reduced the complexity to a much more manageable O(N), allowing for simulations
with thousands of stars to be run in a reasonable amount of time.

The model, while successful, operates under several key physical simplifications. The
most significant of these is the use of massless stars, which neglects the self-gravity of the
galactic disk and any collisions from occuring. Since all stars are attracted only to the core,
under some initial conditions, stars might get too close to the core and fly away due to their
near zero proximity. In its current form, however, this project has served as an effective
demonstration of the fundamental physics driving galactic collisions and provided a robust
framework for N -body simulation.

6.1 Use of AI

I used ChatGPT and Gemini as a guide to help me understand the methods and clarify
concepts. All code was written by me. AI was primarily used for formatting tables in my
LaTeX report, generating MATLAB plots, and helping with the LaTeX equations. ChatGPT
was very helpful in explaining how the bounce.m function worked and how I could implement
similar logic in my animation.m function, as well as make the simulation look like a dark
sky. It also tought me some of the limitations of the Toomre model and different ways in
mitigating stars from flying away such as gravitational softening which I did not implement.

7 Files

The following MATLAB files were created for this assignment:

• FDA: nbody.m, nbodyaccn.m

• Testing: nbody convergence test.m, galaxy dynamics.m

• Galaxy Setup: toomre galaxy.m

12

• Visualization: animation.m

• Collision script: galaxy collision.m

13

A MATLAB Code Listings

A.1 N-Body Solver Function (nbody.m)

1 function [t, r] = nbody(tmax , level , m, r0 , v0)

2 % nbody Solves the n-body gravitational problem using an FDA.

3 % similar implementation to tutorial 3.

4 %

5 % Input arguments

6 % tmax: (real scalar) Final simulation time.

7 % level: (integer scalar) Discretization level.

8 % m: (real vector [1xN]) Masses of the n-particles.

9 % r0: (real Nx3 matrix) Initial positions

10 % v0: (real Nx3 matrix) Initial velocities

11 %

12 % Output arguments

13 % t: (real vector) Time points (length nt = 2^ level + 1).

14 % r: (real Nx3xnt array) Positions of the particles

15

16 N = numel(m);

17 % --- Finite Difference Grid ---

18 nt = 2^ level + 1; % number of time steps

19 t = linspace (0.0, tmax , nt);

20 deltat = t(2) - t(1);

21 r = zeros(N, 3, nt);

22 % --- Set initial conditions ---

23 r(:,:,1) = r0;

24 a0 = nbodyaccn(m, r0); % acceleration at t=0

25 r(:,:,2) = r0 + v0 * deltat + 0.5 * a0 * deltat ^2;

26

27 % --- Time -stepping loop ---

28 for n = 2:nt -1

29 a = nbodyaccn(m, squeeze(r(:,:,n))); % squeeze to make Nx3

30 r(:,:,n+1) = 2*r(:,:,n) - r(:,:,n-1) + deltat ^2 * a;

31 end

32 end

Listing 1: The MATLAB function for the n-body simulation.

14

A.2 N-Body Acceleration Function (nbodyaccn.m)

1 function [a] = nbodyaccn(m, r)

2 % nbodyaccn Computes accelerations for an N-body

3 % gravitational system.

4 %

5 % Input arguments

6 % m: Vector of length N containing the particle masses

7 % r: N x 3 array containing the particle positions

8 %

9 % Output arguments

10 % a: N x 3 array containing the computed accelerations

11 %

12

13 N = numel(m);

14 a = zeros(N,3);

15 m = m(:);

16

17 idx_core = find(m > 0);

18 m_nonzero = m(idx_core);

19 r_core = r(idx_core , :);

20

21 for i = 1:N

22 % Vector from i to all cores

23 rij = r_core - r(i, :);

24 dist3 = vecnorm(rij , 2, 2).^3;

25

26 % If current particle is one of the massive ones , skip self

27 self_idx = (idx_core == i);

28 dist3(self_idx) = Inf;

29

30 % Compute sum over massive bodies

31 a(i, :) = sum(rij .* (m_nonzero ./ dist3), 1);

32 end

33 end

Listing 2: The MATLAB function for the n-body acceleration.

15

	Introduction
	Theory
	N-Body Problem
	Toomre Model

	Numerical Approach
	Finite Difference Grid
	Initial Conditions for Two-Body Circular Orbit
	Convergence Testing

	Implementation
	N-Body Solver Function
	Acceleration Calculation Function
	Simulation Setup

	Results
	Simulation 1
	Simulation 2

	Conclusion
	Use of AI

	Files
	MATLAB Code Listings
	N-Body Solver Function (nbody.m)
	N-Body Acceleration Function (nbodyaccn.m)

